Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Fuel Effects in a Boosted DISI Engine

2011-08-30
2011-01-1985
Due to the recent drive to reduce CO₂ emissions, the turbocharged direct injection spark ignition (turbo DISI) gasoline engine has become increasingly popular. In addition, future turbo DISI engines could incorporate a form of charge dilution (e.g., lean operation or external EGR) to further increase fuel efficiency. Thus, the conditions experienced by the fuel before and during combustion are and will continue to be different from those experienced in naturally aspirated SI engines. This work investigates the effects of fuel properties on a modern and prototype turbo DISI engine, with particular focus on the octane appetite: How relevant are RON and MON in predicting a fuel's anti-knock performance in these modern/future engines? It is found that fuels with high RON and low MON values perform the best, suggesting the current MON requirements in fuel specifications could actually be detrimental.
Technical Paper

The Application of Telematics to the High-Precision Assessment of Fuel-Borne Fuel Economy Additives

2012-09-10
2012-01-1738
The demonstration benefit from fuel-borne fuel-economy additives to a precision of 1%, or better, traditionally requires very careful experimental design and considerable resource intensity. In practice, the process usually requires the use of well-defined drive cycles (e.g. emission certification cycles HFET, NEDC) in conjunction with environmentally-controlled chassis dynamometer facilities. Against this background, a method has been developed to achieve high-precision fuel economy comparison of gasoline fuels with reduced resource intensity and under arbitrary real-world driving conditions. The method relies upon the inference of instantaneous fuel consumption via the collection of OBD data and the simultaneous estimation of instantaneous engine output from vehicle dynamical behaviour.
Technical Paper

Factors Affecting Test Precision in Latest Vehicle Technologies

2018-04-03
2018-01-0640
Demonstrating the cost/benefits of technologies in the automotive sector is becoming very challenging because the benefits from technologies are sometimes of similar magnitude to testing precision. This paper aims to understand vehicle-borne imprecision and the effect of this on the quality of chassis dynamometer (CD) testing. Fuel consumption and NOx emissions precision is analyzed for two diesel vehicles with particulate filter and SCR systems. The two vehicles were tested on a high precision CD facility over the NEDC (New European Drive Cycle) and WLTC (World harmonized Light-duty Test Cycle) cycles. The CD base precision of testing was characterized between 0.6-3% depending on the cycle phase. A novel application of multi-variate statistical analysis was used to identify the factors that affected testing precision, allowing isolation of small differences that were not obvious when conducting cycle-averaged or cycle-phase-averaged analysis.
Technical Paper

Developing a Precision and Severity Monitoring System for CEC Performance Tests

2004-06-08
2004-01-1892
The Coordinating European Council, CEC, develops performance tests for the motor, oil, petroleum, additive and allied industries. In recent years, CEC has moved away from using round robin programmes (RRP's) for monitoring the precision and severity of test methods in favour of regular referencing within a test monitoring system (TMS). In a TMS, a reference sample of known performance, determined by cross-laboratory testing, is tested at regular intervals at each laboratory. The results are plotted on control charts and determine whether the installation is and continues to be fit to evaluate products. Results from all laboratories are collated and combined to monitor the general health of the test. The TMS approach offers considerable benefits in terms of detecting test problems and improving test quality. However, the effort required in collating data for statistical analysis is much greater, and there are technical difficulties in determining precision from TMS data.
Technical Paper

Designing Fuels Compatible with Reformers and Internal Combustion Engines

2004-06-08
2004-01-1926
Because reformer technology can be used in conjunction with advanced internal combustion engine technology, it is important to be able to formulate fuels that are compatible with both reformers and ICEs It has been found that most hydrocarbon species typically present in gasoline can be reformed with relative ease. The exception is that olefinic species of carbon number 6 and above are relatively much harder to reform. It is shown how a reformer compatible gasoline fuel with high octane can be blended. For Diesel fuels, synthetic ‘Gas to Liquid’ fuels are generally less susceptible to coking and hence superior to petroleum-derived fuels, for use with an onboard reformer.
Technical Paper

Fuel Effects on Regulated Emissions from Modern Gasoline Vehicles

2004-06-08
2004-01-1886
The influence of gasoline quality on exhaust emissions has been evaluated using four modern European gasoline cars with advanced features designed to improve fuel economy and CO2 emissions, including stoichiometric direct injection, lean direct injection and MPI with variable valve actuation. Fuel effects studied included sulphur content, evaluated over a range from 4 to 148 mg/kg, and other gasoline properties, including aromatics content, olefins content, volatility and final boiling point (FBP). All four cars achieved very low emissions levels, with some clear differences between the vehicle technologies. Even at these low emissions levels, all four cars showed very little short-term sensitivity to gasoline sulphur content. The measured effects of the other gasoline properties were small and often conflicting, with differing directional responses for different vehicles and emissions.
Technical Paper

A Critical Road Test Evaluation of a High-Performance Gasoline Additive Package in a Fleet of Modern European and Asian Vehicles

2004-06-08
2004-01-2027
A road test has been conducted to quantify the benefits provided by a high-performance gasoline additive package in a fleet of cars representative of Europe, SE Asia, and South America. The emissions, fuel consumption, and engine cleanliness benefits of additised versus untreated gasoline were compared in 15 pairs of cars. A further 6 cars were operated on a mixture of fuels to show the benefits of additised fuel versus mixed fuelling. The design of the experiment was based on a similar road test conducted in 1991. Through careful test design and execution, it has been possible to assess the performance of the package at a high statistical confidence level. The package provides a high level of inlet system cleanliness, a significant reduction in fuel consumption and reduced HC emissions.
Technical Paper

Effects of GTL Fuel Properties on DI Diesel Combustion

2005-10-24
2005-01-3763
Reduction of vehicle exhaust emissions is an important contributor to improved air quality. At the same time demand is growing for new transportation fuels that can enhance security and diversity of energy supply. Gas to Liquids (GTL) Fuel has generated much interest from governments and automotive manufacturers. It is a liquid fuel derived from natural gas, and its properties - sulphur free, low polyaromatics and high cetane number - make it desirable for future clean light-duty diesel engines. In this paper, the effects of distillation characteristics and cetane number of experimental GTL test fuels on direct injection (DI) diesel combustion and exhaust emissions were investigated, together with their spray behaviour and mixing characteristics. The test results show that the lower distillation test fuels produce the largest reductions in smoke and PM emissions even at high cetane numbers. This is linked to the enhanced air/fuel mixing of the lighter fuel in a shorter time.
Technical Paper

Influence of Fuel Properties on Lubricant Oxidative Stability:Part 1 - Engine Tests

2005-10-24
2005-01-3839
Lubricant samples were aged on a SI bench engine that was run using ten different gasoline fuels. For each gasoline tested, the oxidative stability of the lubricant and the extent of engine wear was assessed in terms of a number of different parameters. Surprisingly, it was found that fuels containing higher levels of olefin (whether C8 olefin, or a C5/C6 olefin blend, or a catalytically cracked refinery stream) performed directionally better than a reference gasoline with low levels of aromatics and olefins. Fuels with a higher final boiling point and higher aromatic content, appeared to be associated with enhanced levels of sludge formation than the reference gasoline, but did not give rise to enhanced engine wear.
Technical Paper

Effect of Sulphur and Silicon in Fuels on an Automotive Reforming Catalyst

2005-05-11
2005-01-2163
The effect of sulphur on a rhodium reformer catalyst was determined in the partial oxidation of n-heptane. The yield loss of the catalyst upon sulphur addition appeared to almost instantaneous and not progressive in time (i.e. it reaches a plateau). Up to ppm levels, the direct yield loss appeared to be linearly related to the sulphur level in the fuel and is of the order of around 3% per ppm of sulphur in the fuel. Sulphur adsorption on rhodium catalyst sites was found to be reversible. The original activity of the catalyst was quickly restored when changing to a sulphur free fuel. The effect of sulphur on the rhodium catalyst does not depend on the structure of the sulphur species. Based on this work, a 10 ppm sulphur maximum seems to be a sufficiently tight specification with respect to the stability of an appropriate reformer catalyst. By contrast, the presence of other species in fuels can cause irreversible and progressive catalyst deterioration.
Technical Paper

Future fuels and lubricant base oils from Shell Gas to Liquids (GTL) technology

2005-05-11
2005-01-2191
Shell was the first oil marketer to bring to commercial scale, Gas to Liquids (GTL) technology for fuels and base oils production. This started with the commissioning of the multi-purpose GTL facility at Bintulu, Malaysia in 1993. The plant produces both automotive gas oil (GTL Fuel) as well as a number of speciality products including detergent feedstocks, a range of Fisher-Tropsch commercial wax grades, and a feedstock for base oils production. The base oil feedstock has been shipped to Shell facilities in Japan and France since 1994 where it is solvent de-waxed to produce the first commercially available GTL base oils. The GTL Fuel is currently being used in premium diesels in Germany, Greece and Thailand. Shell has announced in 2003 its intention to build two world scale GTL trains in Qatar and this will include substantial fuels and base oils facilities.
Technical Paper

Impact of Fuel Octane Quality on Various Advanced Vehicle Technologies

2020-04-14
2020-01-0619
Fuel with higher octane content is playing a key role in optimising engine performance by allowing a more optimal spark timing which leads to increased engine efficiency and lower CO2 emissions. In a previous study the impact of octane was investigated with a fleet of 20 vehicles using market representative fuels, varying from RON 91 to 100. The resulting data showed a clear performance and acceleration benefit when higher RON fuel was used. In this follow-up study 10 more vehicles were added to the database. The vehicle fleet was extended to be more representative of Asian markets, thus broadening the geographical relevance of the database, as well as adding vehicles with newer technologies such as boosted down-sized direct injection engines, or higher compression ratio engines. Eight different fuel combinations varying in RON were tested, representing standard gasoline and premium gasoline in different markets around the world.
Technical Paper

Impact of Demanding Low Temperature Urban Operation on the Real Driving Emissions Performance of Three European Diesel Passenger Cars

2018-09-10
2018-01-1819
In Europe, the development and implementation of new regulatory test procedures including the chassis dynamometer (CD) based World Harmonised Light Duty Test Procedure (WLTP) and the Real Driving Emissions (RDE) procedure, has been driven by the close scrutiny that real driving emissions and fuel consumption from passenger cars have come under in recent times. This is due to a divergence between stated certification performance and measured on-road performance, and has been most pointed in the case of NOx (oxides of nitrogen) emissions from diesel cars. The RDE test is certainly more relevant than CD test cycles, but currently certification RDE cycles will not necessarily include the most extreme low speed congested or low temperature conditions which are likely to be more challenging for NOx after-treatment systems.
Technical Paper

The Effects of Octane, Sensitivity and K on the Performance and Fuel Economy of a Direct Injection Spark Ignition Vehicle

2014-04-01
2014-01-1216
This study investigates the effects of octane quality on the performance, i.e., acceleration and power, and fuel economy (FE) of one late model US vehicle, which is powered by a small displacement, turbocharged, gasoline direct injection (GDI) engine. The relative importance of the gasoline parameters Research and Motor Octane Number (RON and MON) in meeting the octane requirement of this engine to run at an optimum spark timing for the given demand was considered by evaluating the octane index (OI), where OI = (1-K) RON + K MON and K is a constant depending on engine design and operating conditions. Over wide open throttle (WOT) accelerations, the average K of this Pontiac Solstice was determined as −0.75, whereby a lower MON would give a higher OI, a higher knock resistance and better performance.
Technical Paper

An Efficient, High-Precision Vehicle Testing Procedure to Evaluate the Efficacy of Fuel-Borne Friction Modifier Additives

2019-12-19
2019-01-2353
Improved fuel economy is increasingly a key measure of performance in the automotive industry driven by market demands and tighter emissions regulations. Within this environment, one way to improve fuel economy is via fuel additives that deliver friction- reducing components to the piston-cylinder wall interface. Whilst the use of friction modifiers (FMs) in fuel or lubricant additives to achieve fuel economy improvements is not new, demonstrating the efficacy of these FMs in vehicles is challenging and requires statistical design together with carefully controlled test conditions. This paper describes a bespoke, efficient, high-precision vehicle testing procedure designed to evaluate the fuel economy credentials of fuel-borne FMs. By their nature, FMs persist on engine surfaces and so their effects are not immediately reversible upon changing to a non FM-containing fuel (“carryover” effect), therefore requiring careful design of the test programme.
Technical Paper

Lubricant Impact on Friction by Engine Component: A Motored Friction Tear Down Assessment of a Production 3.6L Engine

2019-12-19
2019-01-2239
Worldwide, Fuel Economy (FE) legislation increasingly influences vehicle and engine design, and drives friction reduction. The link between lubricant formulation and mechanical friction is complex and depends on engine component design and test cycle. This Motored Friction Tear Down (MFTD) study characterizes the friction within a 3.6L V6 engine under operating conditions and lubricant choices relevant to the legislated FE cycles. The high-fidelity MFTD results presented indicate that the engine is a low-friction engine tolerant of low viscosity oils. Experiments spanned four groups of engine hardware (reciprocating, crankshaft, valvetrain, oil pump), five lubricants (four candidates referenced against an SAE 0W-20) and five temperature regimes. The candidate lubricants explored the impact of base oil viscosity, viscosity modifier (VM) and friction modifier (FM) content.
Journal Article

Development of an Engine Test to Rate the EGR Deposit Formation Propensity of Fuels in Light-Duty Diesel Engines

2020-09-15
2020-01-2096
Exhaust Gas Recirculation (EGR) is employed in diesel engines to reduce engine-out NOx. Carbon-containing deposits form in the EGR systems of modern diesel engines as the particulate matter, hydrocarbons and other entrained species deposit from the exhaust gas flow as it cools. Much work has been done by Original Equipment Manufacturers (OEMs) to reduce deposits and mitigate their effects by optimized dimensioning of EGR coolers and valves, introduction of EGR cooler bypass for use in the most sensitive cold conditions and experimenting with oxidation catalysts upstream of the EGR system. Nevertheless, deposits forming in the high-pressure Exhaust Gas Recirculation (HP-EGR) systems of modern diesel engines can sometimes lead to a number of problems including emissions and fuel consumption deterioration, poor performance and drivability, as well as breakdowns. An engine test method has been developed to enable the impact of fuel on deposits in the HP-EGR system to be studied.
Journal Article

Assessing the Impact of Lubricant and Fuel Composition on LSPI and Emissions in a Turbocharged Gasoline Direct Injection Engine

2020-04-14
2020-01-0610
Downsized turbocharged gasoline direct injection (TGDI) engines with high specific power and torque can enable reduced fuel consumption in passenger vehicles while maintaining or even improving on the performance of larger naturally aspirated engines. However, high specific torque levels, especially at low speeds, can lead to abnormal combustion phenomena such as knock or Low-Speed Pre-Ignition (LSPI). LSPI, in particular, can limit further downsizing due to resulting and potentially damaging mega-knock events. Herein, we characterize the impacts of lubricant and fuel composition on LSPI frequency in a TGDI engine while specifically exploring the correlation between fuel composition, particulate emissions, and LSPI events. Our research shows that: (1) oil composition has a strong impact on LSPI frequency and that LSPI frequency can be reduced through a carefully focused approach to lubricant formulation.
Technical Paper

Development and Assessment of Traction Fluids for Use in Toroidal (IVT) Transmissions

2002-03-04
2002-01-0588
The attributes of a traction fluid are fundamental to the successful operation of a traction drive transmission. The fluid must lubricate and protect the components against wear and corrosion, whilst simultaneously providing high traction to transmit power efficiently. A selection of commercial and candidate fluids have been assessed with both a bench-test and a novel traction rig. The principal objective has been to achieve a balance between the conflicting requirements of low temperature viscometrics and high temperature traction. Fluid performance is found to vary according to the rig employed underlining the need to test under prevailing conditions. Data from the traction rig is validated against a variator module.
Technical Paper

Control of Diesel Engine Exhaust Gas Recirculation System Deposits with Fuel Additives

2022-08-30
2022-01-1072
Exhaust Gas Recirculation (EGR) is employed in diesel engines to reduce engine-out NOx emissions. Despite the concerted design efforts of manufacturers, high-pressure Exhaust Gas Recirculation (HP-EGR) systems can be susceptible to fouling as the particulate matter, hydrocarbons and other entrained species deposit from the exhaust gas flow as it cools on its passage through the EGR system. Such deposits can lead to a number of problems including deterioration of emissions, fuel efficiency, performance and drivability, as well as breakdowns. The development of an engine test method to enable the study of the impact of fuel on deposits in the HP-EGR system was reported in 2020. In the test, a 4-cylinder light-duty diesel engine of 1.6L displacement runs at conditions conducive to EGR deposit formation over 24 hours and the impact of fuels on deposit formation is determined through weighing of the EGR system components before and after the test.
X